Using temporal convolution network for remaining useful lifetime prediction
نویسندگان
چکیده
منابع مشابه
Bayesian Approach for Remaining Useful Life Prediction
Prediction of the remaining useful life (RUL) of critical components is a non-trivial task for industrial applications. RUL can differ for similar components operating under the same conditions. Working with such problem, one needs to contend with many uncertainty sources such as system, model and sensory noise. To do that, proposed models should include such uncertainties and represent the bel...
متن کاملGear Remaining Useful Life Prediction Based on Grey Neural Network
The condition monitoring data of gears is asymmetric distributed, moreover, sampling is usually conducted discontinuously in practice. Thus makes it difficult to predict gear remaining useful life accurately considering the two reasons above. In this paper, a fusion method is proposed using Elman Neural Network to modify residual series of grey model since Elman Neural Network performs better o...
متن کاملRemaining Useful Life Prediction Using Elliptical Basis Function Network and Markov Chain
This paper presents a novel method for remaining useful life prediction using the Elliptical Basis Function (EBF) network and a Markov chain. The EBF structure is trained by a modified Expectation-Maximization (EM) algorithm in order to take into account the missing covariate set. No explicit extrapolation is needed for internal covariates while a Markov chain is constructed to represent the ev...
متن کاملRemaining Fatigue Lifetime Prediction for Retirement-for-Cause in Metals
A methodology is evaluated to predict the probability of specimen failure with subsequent fatigue, after a short surface crack has been detected in Al 2219-T851 alloy. Cracks are detected and tracked to failure using optical microscopy. Predictions of remaining lifetime distributions are made with a i~onte Carlo procedure in conjunction with growth laws which model the effect of grains of diffe...
متن کاملA Study on Remaining Useful Life Prediction for Prognostic Applications
We consider the prediction algorithm and performance evaluation for prognostics and health management (PHM) problems, especially the prediction of remaining useful life (RUL) for the milling machine cutter and lithium‐ion battery. We modeled battery as a voltage source and internal resisters. By analyzing voltage change trend during discharge, we made the prediction of battery remain discharge ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Engineering Reports
سال: 2020
ISSN: 2577-8196,2577-8196
DOI: 10.1002/eng2.12305